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Abstract. In the recent years, Hopf algebras have been introduced to describe certain combinatorial pro-
perties of quantum field theories. I will give a basic introduction to these algebras and review some occur-
rences in particle physics.

PACS. 11.10.-z Field theory

1 Introduction

Hopf algebras were introduced in mathematics in 1941 to
describe in an unified manner similar aspects of groups
and algebras [1]. An article by Woronowicz in 1987 [2],
which provided explicit examples of non-trivial Hopf alge-
bras, triggered the interest of the physics community. In
turn, Hopf algebras have been used for integrable systems
and quantum groups. In 1998 Kreimer and Connes re-
examined renormalization of quantum field theories and
showed that it can be described by a Hopf algebra struc-
ture [3,4]. In this talk I review Hopf algebras and its rela-
tions to perturbative quantum field theories. Application
of Hopf algebras to quantum groups or non-commutative
field theories are not covered here.

2 Hopf algebras

In this section I recall the definition of a Hopf algebra and
I discuss several examples.

2.1 Definition

Let R be a commutative ring with unit 1. An algebra over
the ring R is a R-module together with a multiplication
· and a unit e. We will always assume that the multipli-
cation is associative. In physics, the ring R will almost
always be a field K (examples are the rational numbers
Q, the real numbers R or the complex number C). In this
case the R-module will actually be a K-vector space. Note
that the unit can be viewed as a map from R to A and
that the multiplication can be viewed as a map from the
tensor product A ⊗ A to A (e.g. one takes two elements
from A, multiplies them and gets one element out).
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A coalgebra has instead of multiplication and unit the
dual structures: a comultiplication ∆ and a counit ē. The
counit is a map from A to R, whereas comultiplication is a
map from A to A⊗A. Note that comultiplication and cou-
nit go in the reverse direction compared to multiplication
and unit. We will always assume that the comultiplication
is coassociative. The general form of the coproduct is

∆(a) =
∑

i

a
(1)
i ⊗ a

(2)
i , (1)

where a
(1)
i denotes an element of A appearing in the first

slot of A⊗A and a
(2)
i correspondingly denotes an element

of A appearing in the second slot. Sweedler’s notation [5]
consists in dropping the dummy index i and the summa-
tion symbol:

∆(a) = a(1) ⊗ a(2) (2)

The sum is implicitly understood. This is similar to Ein-
stein’s summation convention, except that the dummy
summation index i is also dropped. The superscripts (1)

and (2) indicate that a sum is involved.
A bialgebra is an algebra and a coalgebra at the

same time, such that the two structures are compatible
with each other. Using Sweedler’s notation, the compati-
bility between the multiplication and comultiplication is
expressed as

∆ (a · b) =
(
a(1) · b(1)

)
⊗
(
a(2) · b(2)

)
. (3)

A Hopf algebra is a bialgebra with an additional map
from A to A, called the antipode S, which fulfills

a(1) · S
(
a(2)

)
= S

(
a(1)

)
· a(2) = 0 for a �= e. (4)
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2.2 Examples

2.2.1 The group algebra

Let G be a group and denote by KG the vector space with
basis G. KG is an algebra with the multiplication given
by the group multiplication. The counit ē is given by:

ē (g) = 1. (5)

The coproduct ∆ is given by:

∆ (g) = g ⊗ g. (6)

The antipode S is given by:

S (g) = g−1. (7)

KG is a cocommutative Hopf algebra. KG is commutative
if G is commutative.

2.2.2 Lie algebras

A Lie algebra g is not necessarily associative nor does
it have a unit. To overcome this obstacle one considers
the universal enveloping algebra U(g), obtained from the
tensor algebra T (g) by factoring out the ideal

X ⊗ Y − Y ⊗ X − [X, Y ] , (8)

with X, Y ∈ g. The counit ē is given by:

ē (e) = 1, ē (X) = 0. (9)

The coproduct ∆ is given by:

∆(e) = e ⊗ e, ∆(X) = X ⊗ e + e ⊗ X. (10)

The antipode S is given by:

S(e) = e, S(X) = −X. (11)

2.2.3 Quantum SU(2)

The Lie algebra su(2) is generated by three generators H,
X± with

[H, X±] = ±2X±, [X+, X−] = H. (12)

To obtain the deformed algebra Uq(su(2)), the last rela-
tion is replaced with

[X+, X−] =
qH − q−H

q − q−1 . (13)

The undeformed Lie algebra su(2) is recovered in the limit
q → 1. The counit ē is given by:

ē (e) = 1, ē (H) = ē (X±) = 0. (14)

The coproduct ∆ is given by:

∆(H) = H ⊗ e + e ⊗ H,

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗ X±. (15)

The antipode S is given by:

S(H) = −H, S(X±) = −q±1X±. (16)

2.2.4 Symmetric algebras

Let V be a finite dimensional vector space with basis {vi}.
The symmetric algebra S(V ) is the direct sum

S(V ) =
∞⊕

n=0

Sn(V ), (17)

where Sn(V ) is spanned by elements of the form
vi1vi2 ...vin with i1 ≤ i2 ≤ ... ≤ in. The multiplication
is defined by

(vi1vi2 ...vim) · (vim+1 ...vim+n

)
= viσ(1)viσ(2) ...viσ(m+n) ,

where σ is the permutation on m + n elements such that
iσ(1) ≤ iσ(2) ≤ ... ≤ iσ(m+n). The counit ē is given by:

ē (e) = 1, ē (v1v2...vn) = 0. (18)

The coproduct ∆ is given for the basis elements vi by:

∆(vi) = vi ⊗ e + e ⊗ vi. (19)

Using (3) one obtains for a general element of S(V )

∆ (v1v2...vn) = v1v2...vn ⊗ e + e ⊗ v1v2...vn

+
n−1∑

j=1

∑

σ

vσ(1)...vσ(j) ⊗ vσ(j+1)...vσ(n), (20)

where σ runs over all (j, n− j)-shuffles. A (j, n− j)-shuffle
is a permutation σ of (1, ..., n) such that

σ(1) < σ(2) < ... < σ(j) and σ(k + 1) < ... < σ(n).

The antipode S is given by:

S(vi1vi2 ...vin) = (−1)nvi1vi2 ...vin . (21)

2.2.5 Shuffle algebras

Consider a set of letters A. A word is an ordered sequence
of letters:

w = l1l2...lk. (22)

The word of length zero is denoted by e. A shuffle algebra
A on the vector space of words is defined by

(l1l2...lk) · (lk+1...lr) =
∑

shuffles σ

lσ(1)lσ(2)...lσ(r), (23)

where the sum runs over all permutations σ, which pre-
serve the relative order of 1, 2, ..., k and of k +1, ..., r. The
counit ē is given by:

ē (e) = 1, ē (l1l2...ln) = 0. (24)

The coproduct ∆ is given by:

∆ (l1l2...lk) =
k∑

j=0

(lj+1...lk) ⊗ (l1...lj) . (25)

The antipode S is given by:

S (l1l2...lk) = (−1)k lklk−1...l2l1. (26)
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Fig. 1. An element of the shuffle algebra can be represented
by a rooted tree without side-branchings, as shown in the left
figure. The right figure shows a general rooted tree with side-
branchings. The root is drawn at the top

2.2.6 Rooted trees

Consider a set of rooted trees (Fig. 1). An admissible cut
of a rooted tree is any assignment of cuts such that any
path from any vertex of the tree to the root has at most
one cut. An admissible cut maps a tree t to a monomial in
trees t1 × ... × tn+1. Precisely one of these subtrees tj will
contain the root of t. We denote this distinguished tree by
RC(t), and the monomial delivered by the n other factors
by PC(t). The counit ē is given by:

ē(e) = 1, ē(t) = 0 for t �= e. (27)

The coproduct ∆ is given by:

∆(e) = e ⊗ e, (28)

∆(t) = t ⊗ e + e ⊗ t +
∑

adm. cuts C of t

PC(t) ⊗ RC(t).

The antipode S is given by:

S(e) = e,

S(t) = −t −
∑

adm. cuts C of t

S (PC(t)
)× RC(t). (29)

2.3 Commutativity and cocommutativity

One can classify the examples discussed above into four
groups according to whether they are commutative or co-
commutative.

– Commutative and cocommutative: Group algebra of a
commutative group, symmetric algebras.

– Non-commutative and cocommutative: Group algebra
of a non-commutative group, universal enveloping al-
gebra of a Lie algebra.

– Commutative and non-cocommutative: Shuffle alge-
bra, algebra of rooted trees.

– Non-commutative and non-cocommutative: q-
deformed algebras.

Whereas research on quantum groups focussed primarily
on non-commutative and non-cocommutative Hopf alge-
bras, it turns out that for applications in perturbative
quantum field theories commutative, but not necessarily
cocommutative Hopf algebras like shuffle algebras, sym-
metric algebras and rooted trees are the most important
ones.

��

Fig. 2. Nested singularities are encoded in rooted trees

�� �

Fig. 3. Overlapping singularities yield a sum of rooted trees

3 Occurrence in particle physics

I will discuss three application of Hopf algebras in pertur-
bative particle physics: Renormalization, Wick’s theorem
and Feynman loop integrals.

3.1 Renormalization

Short-distance singularities of the perturbative expansion
of quantum field theories require renormalization [6]. The
combinatorics involved in the renormalization is governed
by a Hopf algebra [3,4] The model for this Hopf algebra
is the Hopf algebra of rooted trees (Fig. 2 and 3).

Recall the recursive definition of the antipode:

S(t) = −t −
∑

adm. cuts C of t

S (PC(t)
)× RC(t). (30)

The antipode satisfies

m [(S ⊗ id)∆(t)] = 0, (31)

where m denotes multiplication:

m (a ⊗ b) = a · b. (32)

Let R be an operation which approximates a tree by ano-
ther tree with the same singularity structure and which
satisfies the Rota-Baxter relation:

R (t1t2) + R (t1) R (t2) = R (t1R (t2)) + R (R (t1) t2) .

For example, minimal subtraction (MS)

R
( ∞∑

k=−L

ckεk

)
=

−1∑

k=−L

ckεk (33)

fulfills the Rota-Baxter relation. To simplify the notation,
I drop the distinction between a Feynman graph and the
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evaluation of the graph. One can now twist the antipode
with R and define a new map

SR(t) = −R
(

t +
∑

adm. cuts C of t

SR
(
PC(t)

)× RC(t)

)
.

From the multiplicativity constraint (33) it follows that

SR (t1t2) = SR (t1) SR (t2) . (34)

If we replace S by SR in (31) we obtain

m [(SR ⊗ id)∆(t)] = finite, (35)

since by definition SR differs from S only by finite terms.
Equation (35) is equivalent to the forest formula. It should
be noted that R is not unique and different choices for R
correspond to different renormalization prescription.

3.2 Wick’s theorem

I will discuss here the simplest version of Wick’s theorem,
which relates the time-ordered product of n bosonic field
operators to the normal product of these operators and
contractions. As an example one has

T (φ1φ2φ3φ4) = : φ1φ2φ3φ4 : + (φ1, φ2) : φ3φ4 :
+ (φ1, φ3) : φ2φ4 : + (φ1, φ4) : φ2φ3 : + (φ2, φ3) : φ1φ4 :
+ (φ2, φ4) : φ1φ3 : + (φ3, φ4) : φ1φ2 : + (φ1, φ2) (φ3, φ4)
+ (φ1, φ3) (φ2, φ4) + (φ1, φ4) (φ2, φ3) , (36)

where I used the notation

(φi, φj) = 〈0 |T (φiφj)| 0〉 (37)

to denote the contraction. One can use Wick’s theorem
to define the time-ordered product in terms of the normal
product and the contraction. To establish the connection
with Hopf algebras, let V be the vector space with basis
{φi} and identify the normal product with the symme-
tric product discussed in Sect. 2.2.4 [7,8]. This yields the
symmetric algebra S(V ). The contraction defines a bili-
near form V ⊗ V → C. One extends this pairing to S(V )
by

(: N1N2 :, M1) =
(
N1, M

(1)
1

)(
N2, M

(2)
1

)
,

(N1, : M1M2 :) =
(
N

(1)
1 , M1

)(
N

(2)
1 , M2

)
. (38)

Here, N1, N2, M1 and M2 are arbitrary normal products
of the φi. With the help of this pairing one defines a new
product, called the circle product, as follows:

N ◦ M =
(
N (1), M (1)

)
: N (2)M (2) : (39)

Again, N and M are normal products. Fig. 4 shows pic-
torially the definition of the circle product involving the
coproduct, the pairing (..., ...) and the multiplication. It
can be shown that the circle product is associative. Fur-
thermore, one obtains that the circle product coincides
with the time-ordered product. For example,

φ1 ◦ φ2 ◦ φ3 ◦ φ4 = T (φ1φ2φ3φ4) . (40)

The reader is invited to verify the l.h.s of (40) with the
help of the definitions (37), (38) and (39).
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Fig. 4. The “sausage tangle”: pictorial representation of the
definition of the circle product
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Fig. 5. A one-loop three-point function with two external mas-
ses

3.3 Loop integrals

The calculation of Feynman loop integrals is crucial for
precise predictions of cross sections in particle physics phe-
nomenology. An example is the one-loop three-point func-
tion shown in Fig. 5. This integral evaluates in dimensional
regularization (D = 4−2ε) to a hyper-geometric function:

I(ν1, ν2, ν3) =

cΓ (−s123)
ν123−D/2

∫
dDk1

iπD/2

1
(−k2

1)ν1

1
(−k2

2)ν2

1
(−k2

3)ν3

= cΓ
1

Γ (ν1)Γ (ν2)
Γ (D/2 − ν1)Γ (D/2 − ν23)

Γ (D − ν123)

×
∞∑

n=0

Γ (n + ν2)Γ (n − D/2 + ν123)
Γ (n + 1)Γ (n + ν23)

(1 − x)n
. (41)

where x = (p1 + p2)2/(p1 + p2 + p3)2,

cΓ =
Γ (1 − 2ε)

Γ (1 + ε)Γ (1 − ε)2
. (42)

and the νj are the powers to which each propagator is
raised. For ν1 = ν2 = ν3 = 1 the expression simplifies and
one obtains for the Laurent expansion in ε:

I(1, 1, 1) =
1
ε

lnx

(1 − x)
− 1

2
ln2 x

(1 − x)
+ O(ε) (43)

From explicit higher order calculations it is emerging that
one can express the results of Feynman integrals in multi-
ple polylogarithms. Multiple polylogarithms are a genera-
lization of the logarithm. In particular they can depend on
several scales x1, x2, ..., xk, as opposed to the logarithm,
which only depends on one argument x. Multiple polylo-
garithms have been studied in recent years by mathema-
ticians and physicists [9,10,11,12,13]. Multiple polyloga-
rithms can either be defined by an integral representation
or a sum representation. They satisfy two distinct Hopf



S. Weinzierl: Hopf algebra structures in particle physics 875

algebras and it is convenient to introduce both definitions
to discuss the algebraic properties. First the definition by
an iterated integral representation:

G(z1, ..., zk; y) =

y∫

0

dt1
t1 − z1

t1∫

0

dt2
t2 − z2

...

tk−1∫

0

dtk
tk − zk

,

G(0, ..., 0; y) =
1
k!

(ln y)k
. (44)

For fixed y the functions G(z1, ..., zk; y) satisfy a shuffle
algebra in the letters z1, ..., zk. An example for the mul-
tiplication is:

G(z1; y)G(z2; y) = G(z1, z2; y) + G(z2, z1; y) (45)

Alternatively multiple polylogarithms can be defined by
an iterated sum representation:

Limk,...,m1(xk, ..., x1) =
∑

i1>i2>...>ik>0

xi1
1

i1
m1

. . .
xik

k

ik
mk

.

The functions Limk,...,m1(xk, ..., x1) satisfy a quasi-shuffle
algebra in the letters xj

i/imj . An example for the multi-
plication is:

Lim1(x1)Lim2(x2) =
Lim1,m2(x1, x2) + Lim2,m1(x2, x1) + Lim1+m2(x1x2).

Note the additional third term on the r.h.s. as compared
to a shuffle product. A quasi-shuffle algebra is also a Hopf
algebra [14].

The functions G(z1, ..., zk; y) and Limk,...,m1(xk, ..., x1)
denote the same class of functions. With the short-hand
notation

Gm1,...,mk
(z1, ..., zk; y) =

G(0, ..., 0︸ ︷︷ ︸
m1−1

, z1, ..., zk−1, 0..., 0︸ ︷︷ ︸
mk−1

, zk; y)

the relation between the two notations is given by

Limk,...,m1(xk, ..., x1) =

(−1)kGm1,...,mk

(
1
x1

,
1

x1x2
, ...,

1
x1...xk

; 1
)

. (46)

The two notations are introduced to exhibit the two dif-
ferent Hopf algebra structures.

Multiple polylogarithms were needed for the two-loop
calculation for e+e− → 3 jets. Here, classical polyloga-
rithms like Lin(x) are not sufficient, since there are two
variables inherent in the problem:

x1 =
s12

s123
, x2 =

s23

s123
. (47)

The calculation has been performed independently by two
groups, one group used shuffle algebra relations from the
integral representation [15,16], the other group used the
quasi-shuffle algebra from the sum representation [17].
Although these calculations exploited mainly properties

related to the multiplication in the two algebras, the
coalgebraic properties can be used to simplify expressi-
ons [18]. Integration-by-part identities relate the combina-
tion G(z1, ..., zk; y) + (−1)kG(zk, ..., z1; y) to G-functions
of lower depth:

G(z1, ..., zk; y) + (−1)kG(zk, ..., z1; y)
= G(z1; y)G(z2, ..., zk; y) − G(z2, z1; y)G(z3, ..., zk; y)

+... − (−1)k−1G(zk−1, ...z1; y)G(zk; y), (48)

Equation (48) can also be derived in a different way. In
a Hopf algebra we have for any non-trivial element w the
following relation involving the antipode:

w(1) · S(w(2)) = 0. (49)

Working out the relation (49) for the shuffle alge-
bra of the functions G(z1, ..., zk; y), we recover (48).
A similar relation can be obtained for the functions
Limk,...,m1(xk, ..., x1) using the quasi-shuffle algebra.

4 Summary

Hopf algebras occur in physics within the domains of
quantum groups, integrable systems and quantum field
theory. In this talk I focussed on the last point and dis-
cussed occurrences in perturbation theory. Hopf algebras
allow to express certain combinatorial properties in a clean
way. I discussed the reformulation of the forest formula for
renormalization, Wick’s theorem and its relation to defor-
med products as well as the equivalence of relations obtai-
ned from integration-by-parts and the antipode in the case
of Feynman loop integrals. The underlying Hopf algebras
are all commutative, but not necessarily cocommutative.
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